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Mesoscale simulation of phoretically osmotic boundary condition
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Boundary walls can drive a tangential flow of fluids by phoretic osmosis when exposed to a gradi-
ent field, including chemical, thermal or electric potential gradient. At microscales, such boundary
driving mechanisms become quite pronounced. Here, we propose a mesoscale strategy to simulate
the phoretically osmotic boundaries, in which the microscopic fluid-wall interactions are coarse-
grained into the bounce-back or specular reflection, and the phoretically osmotic force is generated
by selectively reversing the tangential velocity of specific fluid particles near the boundary wall.
With this scheme, the phoretically osmotic boundary can be realized with a minimal modification
to the widely used mesoscopic no-slip/slip hydrodynamic boundary condition. Its implementation
is quite efficient and the resulting phoretically osmotic flow is flexibly tunable. Its validity is veri-
fied by performing extensive mesoscale simulations for both the diffusioosmotic and thermoosmotic
boundaries. In particular, we use the proposed scheme to investigate fluid transport driven by the
phoretic osmosis in microfluidic systems and the effects of the diffusioosmosis on the dynamics of
active catalytic colloidal particles. Our work thus offers new possibilities to study the phoretically
osmotic effect in active complex fluids and microfluidic systems by simulation, where the gradient
fields are ubiquitous.

PACS numbers: 02.70.-c,47.11.-j,47.57.J-

I. INTRODUCTION

In simulations of the dynamics of complex fluids, a
challenge is to bridge the enormous length- and time-
scale gaps between the solvent and solute degrees of
freedom [1, 2]. To treat this problem, considerable ef-
forts have been made to develop mesoscopic fluid sim-
ulation methods including lattice Boltzmann [3], direct
simulation Monte Carlo [4, 5], dissipative particle dy-
namics (DPD) [6–8], and multiparticle collision dynam-
ics (MPC) [9–11]. By disregarding irrelevant microscopic
details, these techniques correctly capture the essential
physical features of the solvent, such as hydrodynamic
interactions and thermal fluctuations. Mesoscopic flu-
id simulation methods thus provide access to length and
time scales, where most of the relevant phenomena in
complex fluids take place.

A complete mesoscale simulation must properly ac-
count for the hydrodynamic boundary condition between
the solvent and the confinement, on which the dynamic-
s of complex fluids sensitively depends. Two common
boundary conditions are slip and no-slip boundaries [12],
depending on the microscopic properties of the wall. At
mesoscale level such boundary conditions can be mod-
eled through simple collision rules between the solvent
particles with the boundary, e.g., specular reflection for
slip boundary [11, 13–15] and bounce-back operation for

∗Electronic address: mcyang@iphy.ac.cn
†Electronic address: lr@iphy.ac.cn
‡Electronic address: fye@iphy.ac.cn
§Electronic address: kechen@iphy.ac.cn

no-slip boundary [16–18] (Fig. 1). The coarse-grained
realization of the hydrodynamic boundary significantly
reduces computational complexity.

Besides the no-slip and slip boundaries, another im-
portant type of hydrodynamic boundary is phoretical-
ly osmotic (PO) one [19–22] that is frequently encoun-
tered in the context of active colloids and microfluidics.
The phoretic osmosis refers to the fluid motion along the
boundary wall driven by the gradient fields parallel to the
boundary. The driving gradients can be chemical, ther-
mal and electric potential gradients, which correspond to
diffusio-, thermo- and electroosmosis, respectively. Ac-
tive colloids, which have attracted considerable interest
during the last decade, often use the self-generated local
gradients to produce self-propulsion [23–30]. The gener-
ated gradient, at the same time, can induce a tangential
osmotic flow on the system boundaries, which in turn
affects significantly the structure and dynamics of the
active colloids [31–35]. On the other hand, owing to in-
terfacially driven property, the phoretic osmosis is an effi-
cient pumping mechanism on micro- and nanoscales, and
has been widely used to manipulate fluids in microflu-
idic environment [36–39]. Therefore, a proper simulation
realization of the PO boundary is critical for studies of
active colloids, microfluidics and systems with gradient
fields. Because the phoretic osmosis originates from mi-
croscopic interactions between the solvent molecule and
the constituent atoms of the boundaries, in principle the
PO boundary can be simulated by standard molecular
dynamics method [40–44]. However, such microscopic
realizations of the PO boundary are computationally too
expensive to be feasible for large-scale simulations. Thus,
a coarse-grained scheme for modeling the PO boundary
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is highly desirable.
In this paper, we propose a mesoscale strategy to sim-

ulate the PO boundary. The microscopic interaction-
s between the solvent and boundary are first coarse-
grained into simple operations on the velocities of sol-
vent molecules, either bounce-back or specular reflection.
Then, a PO driving operation is introduced by revers-
ing the tangential velocity of a specific type of solvent
particles near the boundary wall. Here, the particle is
classified in terms of its chemical species in the case of
concentration gradient or its instantaneous kinetic ener-
gy in the case of thermal gradient. The selective rever-
sion of the particle tangential velocity can lead to a PO
force parallel to the boundary wall in inhomogeneous so-
lutions. With this strategy, the implementation of the
PO boundary is quite simple and efficient, similar to the
case of the mesoscale no-slip/slip boundary. Moreover,
the induced PO flow is a direct physical consequence
of the interactions between the inhomogeneous solvent
and the boundary, and is flexibly tunable. The proposed
method is justified by means of mesoscale fluid simula-
tions whose results are consistent with existing theoreti-
cal predictions. To demonstrate its applications, we use
the method to simulate the PO-driven fluid transport in
various microfluidic environments. The obtained results
qualitatively agree with the previous molecular dynam-
ics simulations or experiments. Furthermore, we study
the effect of a diffusioosmotic boundary wall on the mo-
tion of an active colloidal sphere with a uniform catalytic
surface. The simulation indicates that the diffusioosmot-
ic flow can induce a strong accumulation or depletion of
the colloidal particle at the wall, sensitively depending on
the diffusioosmotic properties of the wall. The proposed
mesoscale scheme thus provides us a promising tool to
simulate the phoretic osmosis in active suspensions and
microfluidic systems, and opens up new possibilities for
mesoscale simulations of nonequilibrium complex fluids.
The paper is organized as follows. In Sec. II, the

mesoscale scheme for modeling the PO boundary is in-
troduced, where we limit ourselves to two typical phoret-
ic osmosis: diffusioosmosis and thermoosmosis. In Sec.
III, we describe the simulation approach and systems.
Section IV presents the simulation results for both the
diffusio-osmotic and thermo-osmotic boundaries. Final-
ly, a conclusion is given in Sec. V.

II. PHORETICALLY OSMOTIC BOUNDARY
CONDITIONS

Before explaining how to implement the mesoscale PO
boundary condition, we briefly review the coarse-grained
realization of the stick (no-slip) and slip hydrodynam-
ic boundaries. For the stick boundary condition, the
fluid velocity relative to the boundary is zero at the
boundary surface. In most coarse-grained simulations,
the stick boundary condition is achieved by the bounce-
back rule [16–18, 45], in which the (relative) velocities of

the fluid particles are reversed upon a collision with the
boundary, i.e., v → −v, as shown in Fig. 1(a). Alterna-
tively, the stick boundary can also be modeled stochasti-
cally [17, 46–48], where the tangential and normal veloc-
ities after a collision are taken from the Maxwellian-like
distributions.

For the slip boundary condition, the tangential stress
exerted on the boundary by the fluid is vanishing. The
simplest way to implement the slip boundary condition
is the specular reflection of the velocity of solvent par-
ticle at the boundary surface [15], namely reversing the
normal component of the particle velocity at the point of
collision, vn → −vn (Fig. 1(b)). Thus, the fluid momen-
tum parallel to the boundary is conserved. Alternatively,
a fluid particle-boundary potential interaction, which on-
ly depends on the normal distance between the boundary
and the particle, also leads to the slip boundary condi-
tion [13, 14].

Different from the stick and slip boundaries, the PO
boundary is a driving boundary, arising from interactions
between the boundary wall and the inhomogeneous so-
lution induced by gradient fields. An intuitive picture
of the phoretic osmosis can be described as the follow-
ing. In a quiescent fluid, each fluid particle may trans-
fer a tangential momentum to the boundary by collision,
and exert an instant tangential force on the boundary.
The direction of the instant tangential force distributes
isotropically in a homogeneous fluid, hence the mean
tangential force on the boundary vanishes. In contrast,
in a gradient-induced inhomogeneous fluid, the momen-
tum transfers along and against the gradient direction
may not cancel each other due to inhomogeneous fluid-
boundary interactions. This results in a nonzero mean
tangential force parallel to the gradient, which is the
driving force of the phoretic osmosis. The phoretical-
ly osmotic force accelerates the fluid from the boundary,
and is balanced by the hydrodynamic frictions in a stead-
state flow. Thus, to properly model the PO boundary
condition, two essential requirements are the tangential

stick slip

v v’ v’v

v’ d

osmotic(a) (b) (c)

v

v’

FIG. 1: Schematic hydrodynamic boundary conditions. No-
slip (a) and slip (b) boundaries are realized separately by
bounce-back operation and specular reflection of the velocity
of the fluid particle upon a collision with the wall surface.
(c) Phoretically osmotic boundary is implemented by condi-
tionally reversing the tangential velocity of the fluid particle
within the fluid-boundary interaction range marked by dot-
ted line. At the same time, the bounce-back rule or specular
reflection is applied at the wall surface. v and v′ refer to
the fluid particle velocities before and after the operation of
velocity, respectively.
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momentum transfer and the inhomogeneous interactions
between the fluid and the boundary.

At mesoscales, tangential momentum transfer can be
easily implemented by a stick-like collision rule between
the fluid particle and the boundary, e.g., the bounce-back
rule. On the other hand, the inhomogeneous interactions
induced by gradient fields imply that the solvent parti-
cles with different features (e.g. the particle species for
chemical gradient) interact differently with the boundary.
From the above argument, the diffusio-osmotic bound-
ary condition in a fluid consisting of two components can
be straightforwardly modeled by performing the bounce-
back operation for one species and the specular reflection
for the other species upon a collision with the boundary.
This simple scheme may indeed generate an osmotic flow
along a concentration gradient parallel to the boundary
(not shown). But, the diffusio-osmotic flow thus pro-
duced is too weak for a simulation application, and is
not flexibly tunable once the concentration gradient is
given. The weak PO flows are due to the short range of
interaction between the solvent and the boundary.

To enhance the tangential coupling between the fluid
and the boundary, and hence the PO flow, we introduce
a parameter, d, to re-define the fluid-boundary interac-
tion range. Specifically, we consider the diffusio-osmotic
boundary in a fluid including A and B components. First,
both A and B particles experience the same type of col-
lision at the boundary surface, either the bounce-back
operation or the specular reflection, corresponding to
the common stick or slip boundaries, respectively. Sec-
ond, particles of species A locating within the interaction
range d with the normal velocities pointing to the bound-
ary reverse their tangential velocities, vτ → −vτ . The
second step, which we name the “driving operation”, is
sketched in Fig. 1(c). The driving operation greatly en-
hances the tangential momentum transfer between the
fluid and the boundary. As a consequence, a stronger
diffusio-osmotic flow can be produced along the gradient
of A component. Moreover, the magnitude of the flow
can be tuned by changing the interaction range d. And,
an opposite osmotic flow (i.e. along the gradient of B
component) can be obtained by performing the driving
operation for B component instead of A component.

Following the above procedure the thermoosmotic
boundary can be similarly implemented. For a single-
component nonisothermal fluid, its inhomogeneity is re-
flected in the instantaneous kinetic energy of the fluid
particle, Ei. The fluid particles in high temperature
area are more possible to have large Ei. So, in order
to selectively perform the driving operation for the flu-
id particles, as in the diffusioosmotic case, we impose a
threshold temperature, Tt, to classify the fluid particles.
The particle with Ei < 1.5kBTt (kB being the Boltz-
mann constant) is called as the cold-particle, otherwise
as the hot-particle. When the driving operation is per-
formed for the hot-particles, the resulted thermoosmotic
flow will be along the thermal gradient, since there are
more hot-particles in high temperature area; otherwise

the flow will be against the thermal gradient. For the
thermoosmotic boundary, the flow velocity can be regu-
lated by both parameters Tt and d.

Thus, with minimal modifications to the implementa-
tion of the coarse-grained no-slip or slip boundary condi-
tions, we are now able to realize the mesoscale PO bound-
ary conditions in simulations. In the following sections,
we verify the validity of the proposed scheme by per-
forming extensive mesoscopic fluid simulations. In the
simulations we use the multi-particle collision dynam-
ics method (MPC) to describe the fluid, although our
PO boundary conditions can be implemented similarly
in other mesoscale simulation approaches.

III. SIMULATION METHOD AND SYSTEMS

A. MPC fluid

In the MPC method, the fluid is represented by N
point particles, with the mass m, position ri, and veloci-
ty vi of particle i, i ∈ {1, . . . , N}. The particle dynamics
consists of alternating streaming and collision steps. In
the streaming step, the fluid particles move ballistically
for a time step h,

ri(t+ h) = ri(t) + hvi(t). (1)

In the collision step, particles are sorted into a cubic lat-
tice with cells of size lc, and their velocities relative to
the center-of-mass velocity of each cell are rotated by a
fixed angle α around a randomly oriented axis [9–11, 13].
These are described by the velocity update

vi(t+ h) = vcm(t) +Ω(vi(t)− vcm(t)), (2)

where vcm is the center-of-mass velocity of the collision
cell and Ω is the rotational matrix. In order to guarantee
Galilean invariance, the grid of collision cells is randomly
shifted at each time step [49]. In the coarse-grained colli-
sion, mass, momentum, and energy are locally conserved,
which assures the algorithm to properly capture hydrody-
namic interactions, mass transport, and heat conduction.
Moreover, thermal fluctuations are naturally involved in
this algorithm. Note that the driving operation within
the boundary layer that generates the PO flow is per-
formed after each MPC collision step, such that it is in-
dependent of the particle sorting and the random shift of
collision cells.

In simulations, lengths are measured in units of lc, en-
ergies in units of kBT (for convenience the Boltzmann
constant kB is set as 1), and masses in units of m. This
corresponds to setting m = 1, lc = 1, and T = 1. Here,
we employ the MPC parameters α = 120◦, h = 0.1, and
the mean number of fluid particles per cell ρ = 10, which
produces a liquid-like dynamics with a Schmidt number
Sc ≃ 13.
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FIG. 2: Schematic diagram of the simulation systems where
the PO boundaries are studied. Here, the periodic boundary
conditions are employed in y and z directions. (a) Both the
walls of the channel have the PO boundary condition and the
gradient field is absent. (b) The left half and right half sides of
the channel have the PO boundary and the common stick/slip
boundary, respectively. The gradient field is along the z axis
and symmetric with respect to the middle of the channel. (c)
A semi-infinite fluid is confined by a bottom wall. The gray
sphere refers to a fixed active fluid region (chemical or heat
source) or a moving colloidal sphere with a uniform catalytic
surface.

B. Systems

In simulations we implement both the diffusioosmotic
and thermoosmotic boundary conditions. For each type
of PO boundary, we study three different cases. First, we
consider a homogeneous (zero gradient) fluid in a chan-
nel with the PO boundary condition in x direction and
the periodic boundary condition in other directions, with
an external force g along the z axis being exerted on ev-
ery fluid particle, as plotted in Fig. 2(a). Such a sys-
tem allows us to test whether in the absence of gradient
fields the PO boundary condition can lead to a stick-like
boundary, since the driving operation in the PO bound-
ary produces a tangential momentum transfer within the
boundary layer. Second, we simulate a fluid confined in
a narrow channel with the PO boundary condition ap-
plied in the left half channel and the common stick/slip
boundary condition in the right half channel, as sketched
in Fig. 2(b). A symmetric gradient field is imposed with
respect to the middle of the channel in the z direction.
Thanks to the heterogeneous boundaries, the symmetric
gradient will drive a directed flow along the channel, act-
ing as a microfluidic pump. Based on this configuration,
we investigate the dependence of the PO flow on the sys-
tem parameters, such as the interaction length d and the
field gradient. Third, we simulate the phoretic osmosis
driven by a single boundary wall in a ‘semi-infinite’ fluid,
in which the gradient fields are generated by a small fluid
region fixed near the wall, i.e., chemical or heat source
(see Fig. 2(c)). In actual simulations we still consider two
walls in x-direction, but with the wall-separation much

larger than that in Fig. 2(b). Thus, the distant wall hard-
ly produces a PO flow since the field gradient near that
wall is negligibly small. This configuration is relevant for
microfluidics, where the gradient fields are often created
by local sources. Furthermore, in order to study the ef-
fect of the PO boundary in active colloids, we simulate a
colloidal particle with a uniform catalytic surface moving
near a diffusioosmotic wall (also see Fig. 2(c)).

IV. RESULTS AND DISCUSSIONS

A. Diffusioosmotic boundary

1. Homogeneous fluid under an external force

The simulation system is sketched in Fig. 2(a), with the
sizes Lx = Ly = 16 and Lz = 40, and the external force
on each particle g = 0.0001. The confined fluid consists
of equimolar A and B components. The PO boundary
condition is implemented by combining the bounce-back
collision at the wall surface and the driving operation
for A particles within the interaction range, d = 0.5.
Due to the absence of the gradient fields, the driving
operation only contributes to the friction between the
fluid and the boundary. In the steady state, the external
force results in a parabolic flow, as shown in Fig. 3(a).
The extrapolation of the flow velocity to the wall gives
a vanishing surface velocity, which shows that the PO
boundary condition in a homogeneous fluid produces a
good stick-like boundary.

It is known that the simple bounce-back rule can not
reproduce a strictly stick boundary in the MPC fluid due
to partially filled collision cells at the boundaries induced
by the random shift, and requires modifications by intro-
ducing virtual wall particles [16]. In the present simula-
tions, both the bounce-back and the driving operations
contribute to the fluid-wall friction, such that the bound-
ary is more sticky than that realized only with the sim-
ple bounce-back rule. Note that throughout the present
work the virtual wall particles are not used. We empha-
size that the partially filled cells does not affect the PO
driving operation in our method, since by construction
the driving operation is implemented after the collision
step for fluid particles near the wall, independent of the
collision cell and its random shift.

With the maximum velocity of the parabolic flow vmax,
we can determine the shear viscosity of the fluid using
the relation, η = gρL2

x/8vmax [50, 51]. The obtained
viscosity is η = 8.4, in a good agreement with the value
8.7 obtained from kinetic theories [52].

2. Inhomogeneous fluid in a heterogeneous channel

The system in Fig. 2(b) has the dimensions Lx = Ly =
10 and Lz = 40, with the PO boundary only for the left
half channel. The symmetric concentration gradient ∇c
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FIG. 3: (a) Poiseuille flow of a homogeneous binary fluid
in a channel with the diffusioosmotic boundary. The lines
correspond to parabolic fits to the flow profile. (b) Steady-
state molar fraction profile of A component in a heteroge-
neous channel with the left half side having the diffusioosmot-
ic boundary of d = 0.5. The driving operation is performed
for A particles, producing an osmotic flow against the z direc-
tion. The dashed lines refer to the molar fraction distribution
in a quiescent fluid.

in the z direction is generated by fixing the concentra-
tion of species A at Lz/2 and Lz, where reaction A → B
and B → A take place respectively. The reactions are
performed by directly transforming the particle species
in local areas with an imposed probability, by which the
concentration gradient is tuned. Such a simple reaction
scheme has been widely used in mesoscale simulation-
s of self-diffusiophoretic microswimmers [18, 26, 27, 45]
and micromachines [30, 44]. Although A and B parti-
cles both take part in the same MPC collision, they are
physically distinguishable by their different interaction-
s with the boundary wall. Because the mass is locally
conserved in the MPC fluid, the mass diffusion can be
correctly captured within the solution. Under the result-
ed chemical gradient, the diffusioosmosis driven by the
left-side boundaries causes a directed fluid flow through
the channel. Although the reaction operation in the sim-
ulations does not input external energy into the system,
it continuously decreases the system entropy by chang-
ing the particle species in the reaction areas such that the
system is kept out-of-equilibrium. In the presence of con-
centration gradient generated by the chemical reaction,
our simulations satisfy the first law of thermodynamic-
s, as the total energy of system (including the internal
energy and the kinetic energy of macroscopic fluid flow)
is conserved. The kinetic energy of macroscopic flow is
extracted from the system internal energy through the
diffusio-osmotic effect; meanwhile the macroscopic kinet-
ic energy is dissipated into the internal energy by friction.
The system reaches the steady state when these two pro-
cesses balance each other. Moreover, the extraction of
the directed transport from the system internal energy
does not violate the second law of thermodynamics, s-
ince the system in our simulation is non-equilibrium.
In the simulations, the parameters d and ∇c are ad-

justed, and the driving operation is separately applied for
species A and B to obtain opposite PO flows. Figure 3(b)
plots a typical steady-state concentration distribution of
A component, which slightly deviates from the expected
linear profile for a quiescent fluid. This deviation aris-

(a)

(b)

FIG. 4: Cross-section of the flow fields of an inhomogeneous
binary fluid in a heterogeneous channel with the diffusioos-
motic boundary conditions. (a) corresponds to type-I bound-
ary and (b) to type-II. Here, d = 0.5, the concentrations fixed
at Lz/2 and Lz are the same as those of Fig. 3(b), and the
driving operation is performed for A component. The dashed
line is the dividing line between the driving (left) and passive
(right) parts of the channel. Small red arrows indicate the
flow velocity direction and intensity, while the blue lines refer
to the streamlines.

-0.012

-0.009

-0.006

-0.003

 0

 0  2  4  6  8  10

v

x

FIG. 5: Velocity profiles for the flows in Fig. 4. Open and
close symbols separately refer to the flow velocities in the
middle sections of the driving (z = Lz/4) and passive (z =
3Lz/4) parts of the channel. Squares and circles correspond
to Fig. 4(a) and (b), respectively. Here, the positive direction
of the flow velocity is defined to be along the z axis.

es from the PO boundary-induced convective flows, and
can be understood by considering the total flux equation
j = −Ds∇c(z)+c(z)v, with Ds and v being the diffusion
coefficient of the fluid particles and the convective flow
velocity, respectively. In the steady state, j is a constant.
Assuming that Ds and v are position-independent, larg-
er convective flow (i.e. higher c) will accompany stronger
diffusive flow (i.e. larger ∇c), if they have opposite di-
rection; otherwise the situation will reverse, as shown in
Fig 3(b). We point out that in a real liquid the PO-
induced flow velocity is generally very small relative to
the diffusive flow velocity, so the concentration would be
linear with position. However, in the present mesoscale
fluid the ratio between the diffusive and convective char-
acteristic times is around lcv/Ds ∼ 10−1, larger than the
real case.

Figure 4 shows a typical diffusioosmosis-induced flow
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FIG. 6: (a) Diffusioosmotic flow velocity as a function of
the mean total number density of fluid particles (including
A and B). Squares and circles correspond to type-I and type-
II boundaries, respectively. Here, the mean number density of
A particles remains fixed, ρA = 5, and the concentration gra-
dient of A component keeps unchanged, with the same value
as that in Fig. 4. (b) Flow velocity ratio of type-II to type-I
as a function of molar fraction of species A. The line refers to
a fit (see main text).

field in the heterogeneous channel. Here, we consider two
different implementations of the diffusioosmotic bound-
ary condition: (I) the bounce-back rule plus the driving
operation (Fig. 4(a)) and (II) the specular reflection plus
the driving operation (Fig. 4(b)). The bounce-back rule
or the specular reflection is applied at the wall surface
of the whole channel; while the driving operation is only
performed in the left half channel. Obviously, the type
I and II correspond to the no-slip and slip limit of the
PO boundary, respectively. Their stationary flow fields
are very different, which becomes clear by comparing the
velocity profiles of the fluid, as plotted in Fig. 5. Par-
ticularly, the velocity profiles for the driving and passive
sides are significantly different in case I, however they are
very similar in case II. An intuitive explanation is that
the driving and passive parts of the type-I boundary are
respectively slip-like and stick-like; while for the type-II
both parts have slip-like boundaries.

Regarding the above two diffusioosmotic implementa-
tions, an interesting question is how much flow enhance-
ment can be obtained with type-II boundary relative to
type-I? We investigate this question by comparing the
flows in Fig. 4(a) and (b). In our simulations, the fric-
tion arises mainly from B component for type-I boundary
and completely from A component for type-II boundary.
Consequently, when fixing the concentration of A species
and its gradient (hence driving force), the flow velocity
for type-I boundary is inversely proportional to the total
number density of the fluid particles, while for the type-
II boundary, the flow velocity is insensitive to the total
number density. This agrees with the simulation results
in Fig. 6(a). Note that the osmotic flow velocity for the
type-II boundary in Fig. 6(a) has a small (but measur-
able) dependence on the total number density ρ, slightly
decreasing with ρ and saturating at larger densities. This
weak dependence arises from the fact that the solvent d-
iffusion coefficient slightly depends on the total density
through ρ/(ρ−1) [52]. Since the driving operation simply
reverses the tangential velocity of A-particles within the

boundary layer, the diffusioosmotic driving force is deter-
mined by the diffusive flow of A-particles in the boundary
layer, hence proportional to the concentration gradient,
the diffusion coefficient and the interaction length. For
fixed ∇c and d, the relation between the diffusion coef-
ficient and ρ explains the slight dependence of the flow
velocity on ρ.

Thus, the velocity ratio of type-II to I is inversely
proportional to the molar fraction of species A, name-
ly ∼ 1/Ψ. Figure 6(b) plots the ratio as a function of
Ψ, which can be well fitted by the function of a/Ψ + b.
Most experiments are performed at low chemical con-
centrations. We can thus extrapolate the velocity ratio
to this regime using the fitted function. For a concen-
tration ∼ 0.01M of A component, the velocity ratio is
around 1000, which is a giant amplification. The present
results are consistent with previous MD simulations and
theoretical calculation [40, 41], which predicted that the
diffusioosmotic flows at slip surfaces can be massively
amplified by 2 to 3 orders of magnitude compared to no-
slip surfaces.

In the following we focus on type-I boundary and in-
vestigate the dependence of the diffusioosmotic flows on
∇c and d. Figure 7(a) indicates that the flow velocity is
linearly proportional to the applied ∇c, consistent with
the well-known theoretical prediction in linear response
framework [19]. The linear flow-gradient relation is the
most essential feature of phoretic osmosis, so the result in
Fig. 7(a) constitutes a strong evidence that the present
mesoscale scheme can properly model the diffusioosmo-
sis. Figure 7(b) shows that for fixed ∇c the flow velocity
also sensitively depends on d; the flow velocity increases
with d until it saturates at larger d. For the mesoscop-
ic diffusioosmotic boundary, this dependence on d is the
result of balance between the diffusioosmotic force fD
and the hydrodynamic friction fF . The diffusioosmot-
ic force originates from the total momentum change of
A-particles within the boundary layer during the driving
operation in a quiescent fluid, and hence is proportional
to the concentration gradient and the interaction length
d, namely fD ∝ d∇c, as mentioned above. On the oth-
er hand, the frictional force arises from the momentum
change of the macroscopic flowing fluid due to the fluid-
wall couplings, including the bounce-back at the wall sur-
face and the driving operation within the boundary lay-
er. The friction from the bounce-back is proportional to
the convective flow velocity v; while the friction from the
driving operation depends on both v and d that effective-
ly measures the number of A-particles interacting with
the boundary in the driving operation. Thus, the total
friction can be expressed as fF ∼ −(γBv + dγDv), with
γB and γD denoting the bounce-back friction coefficient
and the driving operation-induced friction coefficient per
unit thickness, respectively. By force balance, the dif-
fusioosmotic flow velocity reads v ∼ ∇c/(γB/d + γD),
which explains the simulation results in Fig. 7 very well.
Furthermore, for the same∇c and d, by implementing the
driving operation for species B instead of A, the generat-
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FIG. 7: Diffsuioosmotic flow velocity as a function of (a) the
concentration gradient of species A with d = 0.5, and (b) d
with ∇c = −0.03. Here, circles and squares respectively refer
to the driving operation applied for A and B particles, and
line is a linear fit.

ed diffusioosmotic flow reverses, which corresponds to the
wall materials with opposite diffusiophoretic properties.
These results also indicate that the mesoscale diffusioos-
motic boundary is flexibly tunable.

3. Inhomogeneous fluid driven by a single wall

We now apply the mesoscale diffusioosmotic boundary
in the simulations relevant to active suspensions and mi-
crofluidics, as sketched in Fig. 2(c). A spherical region
of active fluid with radius 0.8 near the wall continuously
releases chemicals, creating a radially symmetric concen-
tration gradient in the planes parallel to the wall. To
maintain a steady-state gradient, the released chemicals
is consumed in the areas far from the active region. This
scenario is realized in the simulation by performing reac-
tion A → B within the active region and reaction B → A
beyond a large distance from the active region. The sys-
tem sizes are Lx = Ly = Lz = 40 with wall boundary
in the x direction and periodic boundary for other direc-
tions, and the separation between the bottom wall and
the center of the active region is 2.0. Here type-I diffu-
sioosmotic boundary is used, with an interaction range
of d = 0.5. Figure 8(a) and (b) display the stationary
concentration distribution on the plane of x = 0.5. The
induced gradient component parallel to the wall drives a
radial symmetric diffusiosmotic flow with respect to the
chemical source along the wall, as shown in Fig. 8(c) and
(d). When the driving operation is applied to species A,
the osmotic flow points away from the chemical source
near the wall, and is compensated by inward flows from
the bulk solution (Fig. 8(c)), forming vortex structures.
The flow patterns are reversed when the driving opera-
tion is applied to species B (Fig. 8(d)). In Fig. 8(e), the
diffusioosmotic flow velocity at x = 0.5 is displayed as
a function of the in-plane distance to the center of the
active region, which has a maximum in the vicinity of the
active region and decays to zero at a distance where the
concentration gradient is vanishing. We point out that
this simple configuration nicely mimics the recent exper-
iments by McDermott et al [38]. In that work, a calcium
carbonate particle fixed on the substrate surface in an un-
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FIG. 8: Concentration and flow fields induced by a chemical
source close to a wall with the diffusioosmotic boundary con-
dition. (a) Concentration map of species B on the plane of
x = 0.5 and (b) the corresponding concentration as a func-
tion of the in-plane distance to the chemical source center.
(c) and (d) refer to the flow fields on the yz plane across the
source center, where the driving operations are performed for
A particles and B particles, respectively. Here, the gray circles
represent the active sources. (e) Flow velocity as a function
of the in-plane distance to the active source on the plane of
x = 0.5. Here the squares and circles correspond to the flows
in (c) and (d), respectively. The positive velocity is directed
outwards from the active source.

saturated aqueous solution drives a diffusioosmotic flow
along the substrate due to self-generated chemical gra-
dients, and the resulting flow field agrees well with our
simulation.

4. Catalytic colloidal sphere near a diffusioosmotic wall

The diffusioosmotic wall is expected to have an impor-
tant effect on the dynamics of active catalytic colloid,
which catalyzes chemical reaction in solutions to gener-
ate local chemical gradients. To investigate this effect,
we consider a neutrally buoyant colloidal sphere with a
uniformly catalytic surface that moves freely in a binary
solvent consisting of A and B components. Similar to the
system of Fig. 2(c), the solution is confined by the walls
in x direction with Lx = 26 and has the periodic bound-
ary conditions in other directions with Ly = Lz = 40.
The colloidal sphere interacts with both A and B solven-
t particles through the same repulsive Lennard-Jones-
type (LJ) potential,

U(r) = 4ϵ

[(σ
r

)48

−
(σ
r

)24
]
+ ϵ. (3)

Here, the potential intensity ϵ = kBT and the radius of
colloidal sphere σ = 2.5a are used with the cutoff radius
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FIG. 9: (a) Probability density ρ(x) to find the colloidal
sphere at a distance x from the wall. Here, A and B refer
to the implementation of the driving operation for A and B
components, respectively, and d to the interaction length of
the PO driving operation, with d = 0 meaning the absence of
the driving operation. (b) Surface excess Γ as a function of
the interaction length d. Here, Γ is defined as 1−ρb(Lx−2σw)
with ρb the bulk probability density of the colloidal particle.

σc =
24
√
2σ. Besides the LJ interaction, in order to model

rotational diffusion we employ a stick-boundary coupling
between the colloidal particle and the solvent, which is
implemented by the revised bounce-back rule [18]. We
point out that qualitatively similar results can be ob-
tained by using only LJ potential or bounce-back cou-
pling, since the wall-driven diffusioosmotic flow is inde-
pendent of the colloid-solvent interactions. The interac-
tion between the colloidal particle and the boundary wall
is also described by the LJ potential in Eq. (3), but with
the interacting length σw = 3.7a and the corresponding
cutoff radius 24

√
2σw. This large σw ensures that the de-

pletion force due to the existence of solvent particles has
no effect [14].
The colloidal particle catalyzes the chemical reaction

A → B at its surface, and the reactant is simultane-
ously fed into the solution by performing inverse reac-
tion B → A in regions far from the colloidal parti-
cle. This produces a concentration gradient of A (and
B) around the colloid. Since the colloidal particle has
the same interactions with both A and B particles, it
cannot feel this chemical gradient. Hence, the colloidal
sphere does not experience the diffusiophoresis or self-
diffusiophoresis, which allows us to exclusively study the
diffusioosmotic effect induced by the boundary wall. The
colloidal particle thus performs Brownian motion in the
bulk, carrying a stationary concentration profile around
it. However, when the colloidal particle approaches the
boundary wall, its carried concentration profile will have
a significant gradient component parallel to the wall,
similar to Fig. 8(a) and (b). This will drive a radially
symmetric diffusioosmotic flow with respect to the col-
loidal particle, and the flow fields are similar to those in
Fig. 8(c) and (d). As a consequence, the colloidal par-
ticle is pulled to the boundary or pushed away from the
boundary by the diffusioosmotic flow, depending on the
diffusioosmotic properties of the wall.
Figure 9(a) shows the probability density to find the

colloidal particle at a distance from the boundary wall.
When the wall generates a diffusioosmotic flow point-
ing away from the colloid (driving operation applied for

A particles) similar to Fig. 8(c), the compensating flow
from the bulk pulls the colloidal sphere toward the wal-
l. Conversely, when the diffusioosmotic flow is toward
the colloid (driving operation applied for B particles), a
fluid flow pointing inward the bulk is induced similar to
Fig. 8(d), and the colloidal sphere is pushed away from
the wall. The diffusioosmosis generated by the boundary
wall thus leads to an effective attraction or repulsion be-
tween the colloidal particle and wall. Due to this purely
hydrodynamic effect, the catalytic colloids can show a
strong accumulation or depletion at the wall. The mag-
nitude of accumulation or depletion is clearly dependent
on the diffusioosmotic intensity, as shown in Fig. 9(b),
where the surface excess of the colloidal particle is plot-
ted as the function of the interaction length of the PO
driving operation. Through this example, we show that
the PO boundary indeed has a significant influence in the
motion of active colloids, which cannot be captured by
the common stick or slip boundary. Although we here
consider a uniformly catalytic colloidal particle, similar
behaviors can be expected for self-diffusiophoretic Janus
particles.

B. Thermoosmotic boundary

We also apply the mesoscale thermoosmotic bound-
aries to three different systems, as sketched in Fig. 2(a-
c), with a single-component liquid. The system dimen-
sions are the same as their diffusioosmotic counterparts.
Unless otherwise stated, the thermoosmotic boundary in
this section is type-II (specular reflection plus driving
operation), since the type-I boundary leads to a weak
thermoosmotic flow.

 0

 0.001
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 0.004

 0.005

 0  4  8  12  16
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 0.8
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 1
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 1.2

 0  10  20  30  40
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FIG. 10: (a) Poiseuille flow of a homogeneous single-
component fluid in a channel with the thermoosmotic bound-
ary. Here, the driving operation is applied for the hot particles
with Tt = 2.5. The lines correspond to parabolic fits to the
flow profile. (b) Steady-state temperature profile in a hetero-
geneous channel with the thermoosmotic boundary on the left
half side. Here we use d = 0.3 and Tt = 0.6, and perform the
driving operation for the cold particles so that the thermoos-
motic flow is against the z axis. The dashed lines refer to the
temperature distribution in a quiescent fluid.
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1. Homogeneous fluid under an external force

The schematic system is shown in Fig. 2(a). In the sim-
ulations we use interaction length of d = 0.5, the liquid
temperature T = 1.0, and the driving operation for the
hot particle above a threshold temperature Tt = 2.5. Un-
der an external force of g = 0.0001 per particle, the liquid
flows along the z-axis. The stationary velocity profile of
the flow field is plotted in Fig. 10(a), which is parabolic
with nonzero flow velocity at the wall surface. This is
because for the type-II thermoosmotic boundary used in
the simulations only the driving operation contributes to
the friction, which is not enough to produce a completely
no-slip boundary.

2. Inhomogeneous fluid in a heterogeneous channel

The system is displayed in Fig. 2(b), with the ther-
moosmotic boundary only for the left half of the channel.
The symmetric temperature gradient ∇T along the z di-
rection is generated by fixing the temperature at Lz/2
and Lz with local thermostats, by which the thermal
kinetic energy of local fluid regions are simply rescaled
every MPC step. Figure 10(b) shows a steady-state tem-
perature distribution, which only slightly deviates from a
linear profile compared to the diffusioosmotic case. This
can be understood by noting that the ratio of the char-
acteristic times of the diffusive to convective energy flux
is lcv/DT ∼ 2× 10−2 with DT the heat diffusivity, much
smaller than the diffusioosmotic counterpart. The result-
ing stationary fluid flow (not shown) is similar to that in
Fig. 4(b) because of the use of the specular reflection at
the wall surface. Clearly, the system in Fig. 2(b) can be
used as a micropump to transport fluids, in agreement
with the previous MD simulation [42], where a symmet-
ric temperature gradient is shown to be able to drive a
directed thermoosmotic flow through a channel with het-
erogeneous wall surfaces.
The velocity of thermoosmotic flow can be tuned by

changing ∇T , d and Tt. In Fig. 11 we separately plot the
dependence of the thermoosmotic flow velocity on these
parameters. Figure 11(a) indicates that this mesoscale
scheme correctly reproduces the most fundamental lin-
ear relation between the thermoosmotic flow and ∇T ,
clearly consistent with the existing theoretical predic-
tions [19, 21]. The flow velocity is not sensitive to the
interaction length d, as shown in Fig. 11(b), in contrast
to the diffusioosmotic case. For fixed ∇T and d, the
thermoosmotic flow changes monotonically with Tt, as
displayed by Fig. 11(c) and (d). Furthermore, the driv-
ing operations implemented for the cold and hot particles
generate the thermoosmotic flows in opposite directions,
which correspond to opposite thermoosmotic properties.
These dependencies can be explained in a way similar to
the diffusioosmotic case.
First, note that for the thermoosmotic flows type-II

boundary is used, thus both the thermoosmotic and fric-
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FIG. 11: The thermoosmotic flow velocity as a function of (a)
the temperature gradient, (b) the interaction range, (c) and
(d) the threshold temperature. Here, the circles and squares
refer to the driving operation performed for the cold and hot
particles, respectively. The positive direction of the flow ve-
locity is along the z axis. In (a) d = 0.3 and Tt = 0.6; in (b)
∇T = 0.015, and Tt = 0.5 for the cold-particle case and 2.5 for
the hot-particle case; in (c) and (d), d = 0.3 and ∇T = 0.015.

tional forces arise exclusively from the driving operation.
When the driving operation is applied to the cold par-
ticles (Ei < 1.5Tt), the thermoosmotic force fT and the
frictions depend, respectively, on the diffusive and con-
vective flows of the cold particles within the boundary
layer. The thermoosmotic force can be written as fT ∝
d∇cc with cc being the concentration of the cold particles,
and the frictional force is fF ∼ −dγDv. Here, the friction
coefficient per unit thickness γD arises from the driving
operation of the cold particles and is proportional to cc.
In the steady state fT + fF = 0, the thermoosmotic flow
velocity is determined to be v ∝ ∇cc/cc, independent of
d, as shown in Fig. 11(b). We can use local equilibri-
um approximation to evaluate ∇cc/cc, despite the tem-
perature inhomogeneity in our system. With the local
Maxwellian velocity distribution and ideal gas equation

of state, we have cc ∝ T−5/2
∫ 3Tt/2

0
E1/2 exp(−E/T )dE.

Thus, the ratio ∇cc/cc = (∂ ln cc/∂T )∇T can be evaluat-
ed by numerical integration. The magnitude of the neg-
ative prefactor ∂ ln cc/∂T monotonically decreases with
increasing Tt, in agreement with the simulation result in
Fig. 11(c). Similarly, when the driving operations are ap-
plied to the hot particles, the thermoosmotic flow velocity
is v ∝ ∇ch/ch = (∂ ln ch/∂T )∇T , with the hot parti-
cle concentration ch ∝ T−5/2

∫∞
3Tt/2

E1/2 exp(−E/T )dE.

Numerical estimation shows that the positive prefactor
∂ ln ch/∂T increases with Tt, consistent with the simula-
tion result in Fig. 11(d).
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FIG. 12: Temperature and flow fields induced by a heat source
close to a wall with the thermoosmotic boundary condition.
(a) Temperature map on the plane of x = 1.0 and (b) the cor-
responding temperature as a function of the in-plane distance
to the heat source center. (c) and (d) are the flow fields on the
xz place across the source center, with the driving operation
respectively applied for the cold particles (thermophilic) and
the hot particles (thermophobic). (e) Flow velocity on the
plane of x = 1.0, with the squares and circles corresponding
to the flows in (c) and (d), respectively.

3. Inhomogeneous fluid driven by a single wall

Parallel to the diffusioosmotic case, we investigate the
thermoosmotic flow fields induced by a spherical high-
temperature region near the wall, as sketched in Fig. 2(c).
The active fluid region heats up the surrounding fluid and
generates a radially symmetric temperature gradient on
the x plane. In order to maintain a steady-state temper-
ature distribution, the input energy is drained from the
system through the wall with a lower temperature. In the
simulation, the hot active region of temperature Ts = 1.3
is imposed by rescaling its thermal energy; while the cold
wall of Tw = 0.8 is realized by using the stochastically
thermalized stick wall [17, 46, 48], which leads to a stick-
like boundary. Since the wall has a constant temperature,
the temperature inhomogeneity of the fluid nearest the
wall is weak. To generate a large thermoosmotic flow,
we choose the effective wall-fluid interaction region as
0.5 < x < 1.5, in which the temperature gradient par-
allel to the wall is relatively strong. The thermophobic
and thermophilic walls are modeled respectively by im-
plementing the driving operation for the hot particles
with Tt = 2.5 and for the cold particles with Tt = 0.8,
which produce opposite thermoosmotic flows.

Figure 12(a) and (b) show the stationary temperature
distribution in the plane of x = 1.0. Comparing with
the chemical gradient in Fig. 8(a) and (b), the temper-
ature gradient decays much fast, since the bottom wall
is a constant-temperature heat sink instead of adiabatic

boundary. The temperature gradient-induced flow fields
are plotted in Fig. 12(c) and (d), whose patterns are sim-
ilar to those of the difusioosmosis. The thermoosmotic
flows are shorter-ranged due to the fast decay of ther-
mal gradient, as shown in Fig. 12(e). When the driv-
ing operation is applied to the cold particles, the ther-
moosmotic flow near the wall points outwards from the
active region, consistent with a thermophilic wall; other-
wise the thermoosmotic flow reverses, corresponding to
a thermophobic wall. Although in the present configu-
ration the thermoosmosis-induced flow field is relatively
short-ranged, it can be expected to significantly influence
colloidal dynamics in the presence of large local thermal
gradients, as in the cases of hot Brownian particles [53]
or self-thermophoretic Janus particles [18, 25, 28, 54–56].
Here, the effect of the thermoosmotic wall on the active
colloidal particle will be similar to that in the diffusioos-
motic counterpart.

We finally emphasize that the simulation system in
Fig. 12 is quite similar to that of a very recent experi-
ment [57]. In that work, a thermoosmotic flow is induced
along a water-glass boundary due to a radially symmet-
ric temperature gradient that is generated by a heated
Au nanoparticle immobilized at the glass surface. The
observed flow field is consistent with our simulation re-
sult in Fig. 12(d), since the glass material used in the
experiment is thermophobic.

V. CONCLUSIONS

In this work, we propose a mesoscopic simulation
scheme to implement the PO boundary conditions.
Based on the widely used coarse-grained no-slip/slip
boundary conditions, the PO boundary is achieved by
introducing a driving operation within a boundary lay-
er, that simply reverses the tangential velocity of fluid
particles of a selected type. In homogeneous fluids, the
driving operation only contributes to additional friction;
while in gradient-induced inhomogeneous fluids, the driv-
ing operation together with the nonzero diffusive flux of
the selected particles lead to a net PO force. Because
the instantaneous driving operation is completely com-
patible with the particle-based fluid, the proposed PO
boundaries can be well applied in all the particle-based
mesoscale simulations, including lattice Boltzmann, DPD
or MPC. We justify the mesoscopic simulation scheme
by implementing both the diffusioosmotic and thermoos-
motic boundary conditions, where the fluid particles are
classified according to particle species or kinetic energy,
respectively. The proposed scheme correctly reproduces
the well-known linear relation between the PO flow and
the applied gradient, directly arising from the coarse-
grained fluid-wall interactions, and all the simulation re-
sults can be qualitatively explained by theory. The direc-
tion and magnitude of the PO flow can be flexibly tuned
by adjusting the fluid-wall coupling, which can mimic a
wide range of combinations of the wall materials and flu-
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id compositions. More importantly, the implementation
of the mesoscale PO boundaries is simple and efficien-
t enough to perform large-scale fluid simulations. As
applications, we use this mesoscale scheme to simulate
the PO transport of fluids in various microfluidic envi-
ronments. Furthermore, we use it to study the effect of a
diffusioosmotic boundary wall on the motion of a catalyt-
ic colloidal particle, which shows that the diffusioosmosis
can produce a significant hydrodynamic accumulation or
depletion of the colloidal particle at the wall. Our work
thus paves the way for investigating the important effect
of the PO boundaries on nonequilibrium structure and

dynamics in complex fluids by mesoscale simulations.
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